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The � rst order Fréedericksz transition at saturation point for
weak anchoring NLC cells

YANG GUOCHEN* and ZHANG SUHUA

Physics Institute of Hebei University of Technology, Tianjin 300130, PR China

(Received 16 July 2001; in � nal form 10 November 2001; accepted 12 November 2001 )

On the basis of the modi� ed Rapini–Papoular expression for the anchoring energy, the
properties of the transition at saturation point for weak anchoring NLC cells has been studied
analytically. We � nd that this transition may be of second order, as is usually predicted by
many authors; however, it may also be � rst order. Whether it is � rst or second order is
determined by the material, anchoring energy and thickness of the cell. The conditions for
� rst order transition are deduced by an analytical method, and the results of calculation are
shown by graph for k ( 5 K11 /K33 ) values 0.8, 0.6 and 0.4. The saturation � eld strengths for
the � rst order transition case are calculated and shown in the table.

1. Introduction unit area [5]:
The � rst order liquid crystal (LC) texture transition

has received a great deal of attention [1, 2]. Several gs 5
1
2

A sin2 h (1 a)
devices using weak anchoring have been proposed, and
the transition properties for this weak anchoring case where h is the angle between the easy direction e and
constitute an important subject from both academic and the direction n of the NLC at the nematic–wall interface,
applications viewpoints. Dozov and Martinot-Lagarde and A is the anchoring strength. This is the so-called
[3] have presented experimental evidence for a � rst RP formula; it describes many eŒects successfully in the
order transition in the case of tilted weak anchoring presence of a surface. However, the results calculated
of 5CB on substrates with evaporated SiO. Recently, from the RP formula do not agree well with experimental
Yang Guochen et al. [4] have proposed that a � rst observations in some cases (for instance, the distortions
order Fréedericksz transition at the threshold point may of the director in strong external � elds) [6]. Many
be possible for weak anchoring NLC cells. In this paper, authors have introduced new anchoring energy forms to
we now propose that a � rst order transition at saturation replace the RP formula (1 a) [7–13]. If we assume that
point may also be possible. the primary approximation of gs is the RP formula (1 a),

In fact, the LC texture in NLC cells may undergo two we can suppose that gs can be expressed by a power
transitions as the external � eld increases. The director n series of sin2 h and that only the lower order is included.
and its uniform distribution do not change when the Then the modi� ed gs can be expressed as
� eld is small; when the � eld increases to a de� nite value,

gs 5 A sin2 h(1 1 f sin2 h), (1 b)
the director n and its distribution start to change. This

where f is a modi� cation parameter. f > 0 means thevalue is called the threshold � eld strength. If we use a
gs–sin2 h curve is steeper than that for f 5 0; f < 0 meansnumber axis showing the value of the � eld, the point
this curve is � atter than that for f 5 0. f 5 0 expressescorresponding with the threshold � eld is called the
well the RP formula. By now the anchoring energythreshold point. If the � eld continues to increase, the
form (1 b) has been accepted by most authors [14].deviation of the director and its distribution change

For transition at the saturation point, many authorscontinuously, until the � eld reaches another de� nite
[15] hold that it must be a second order transition,value, with the director n parallel to the direction of the
so that the director n and its distribution change con-external � eld and its distribution again uniform. This
tinuously at the transition point, and the formula of thehigher value is called the saturation � eld strength; the
saturation � eld is obtained from this view. Now we willcorresponding axis point is called the saturation point.
prove that a � rst order transition may occur underRapini and Papoular have proposed a simple pheno-
certain conditions at the saturation point; the director nmenological expression for the anchoring energy per
and its distribution then change discontinuously at the
transition point.*Author for correspondence; e-mail: yang_gc@hotmail.com
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642 Y. Guochen and Z. Suhua

On the basis of the modi� ed Rapini–Papoular Applying the calculus of variations [16], we obtain
the equation of h:expression for the anchoring energy, we study analytically

the transition properties at saturation point for the weak
anchoring NLC cell. In § 2, we obtain fundamental (K11 sin2 h 1 K33 cos2 h)

d2h

dz2equations and discuss their solutions. In § 3, we give the
numerical calculation results, showing that the transition
at saturation point may be second order, as usually pre- Õ (K33 Õ K11 ) cos h sin hAdh

dzB2

dicted, but may also be � rst order. In § 4, we study the
saturation � eld strength for the second order transition. Õ xaH2 sin h cos h 5 0 (6)
Whether the transition is � rst or second order is deter-

with the boundary condition:mined by material parameters, and the anchoring energy
and thickness of the cell. The conditions for � rst order
transition are deduced by means of an analytical method. (K11 sin2 h0 1 K33 cos2 h0 )

dh

dz Kz=0In § 5 the calculation results are shown graphically for
k ( 5 K11 /K33 ) values 0.8, 0.6 and 0.4. In § 6, the saturation 5 Õ A cos h0 sin h0 (1 1 2f cos2 h0 ). (7)
� eld strength for the � rst order transition is calculated
and shown in the table. Equation (6 ) with the boundary condition (7) has

three solutions. Two are trivial solutions. The solutions
and corresponding Gibbs free energy are as follows:2. Fundamental equations and solutions

For a typical NLC cell [4], two substrates lie in the (I) uniform solution: h ; p/2
Z 5 0 and Z 5 1 planes. Assuming the two substrates
are identical, the easy direction e in both substrates is Gu 5 0 (8)
parallel to the direction of the X axis, and surface energy

(II) saturation solution: h ; 0takes the form of equation (1 b). The applied � eld is
parallel to the Z axis.

We use literature notation [4], but take h as the polar Gs 5 CÕ
1
2

xaH2 1 A(1 1 2f)DS (9)
angle; this is more convenient in discussing the transition
at the saturation point. h is a function of Z, written as (III ) disturbed solution: h 5 h(z), where h satis� es
h(Z ). The Gibbs free energy per unit volume in the cell
can be written: dh

dz
5 Õ HCxa (cos2 hm Õ cos2 h)

K11 (1 1 c cos2 h) D1/2
, Az <

1

2B
gb 5 A1

2
K11 sin2 h 1

1
2

K33 cos2 hBAdh

dzB2

(10)

and the boundary condition
Õ

1

2
xaH2 cos2 h (2)

(1 1 c cos2 h0 )HCxaK11 (cos2 hm Õ cos2 h0 )
1 1 c cos2 h0

Dwhere K11 , K33 are Frank splay and bend elastic con-
stants, respectively, and xa is the magnetic anisotropy of

5 A cos h0 sin h0 (1 1 2f cos2 h0 ) (11)
the NLC medium. The surface energy per unit area can
be expressed as:

G
h
5 C1

2
xaH2 cos2 hm Õ 2xaH2 P 1

0
cos2 h dz

gs |z=0
5

A
2

cos2 h0 (1 1 f cos2 h0 ) (3)

1 A cos2 h0 (1 1 f cos2 h0 )DS (12)

gs |z=1
5

A
2

cos2 h1 (1 1 f cos2 h1 ) (4)

where hm is the value at Z 5 1/2, and c 5 (K33 Õ K11 )/K11 .
We now discuss the stable solution, with the externalwhere h0 is the value of h at Z 5 0; h1 is the value of h

magnetic � eld H increasing from 0. If H is small, Guat Z 5 1. And the total energy of the system is:
is the smallest among Gu , Gs and G

h
, and the stable

solution is the uniform solution (8). As H increases
G 5 SP 1

0
gb dz 1 Sgs |z=0

1 Sgs |z=1
(5) continuously and is equal to or bigger than Hth (the

threshold � eld strength) , G
h

is equal to or smaller than
Gu , but smaller than Gs ; the stable solution is then thewhere S is the area of the substrate.
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643Fréedericksz transition in weak anchoring NL C cells

disturbed solution (12). When H is equal to or greater obtain I1 and I2 ; lastly we can calculate g from (20).
g is a function of u; if g > 0, the saturation solution isthan Hsat (the saturation � eld strength) , Gs is equal to

or smaller than G
h
, and if Gs is the smallest, the stable more stable; if g < 0, the disturbed solution is more

stable. There exists u 5 uc , such that when u < uc , g > 0,solution is the saturation solution (9).
We see that the saturation � eld strength may be the transition point is uc . If uc 5 0, the transition is of

second order; otherwise it is of � rst order.decided by:
We may take compound MBBA as an example; its

H > Hsat ; Gs Õ G
h
< 0. (13)

elastic constants are K33 5 1.25K11 , K11 5 5.8 3 10 Õ 12 N
From (13), the conditions for � rst order transition can [13]. Taking two sets of values [a] a 5 1.5, f 5 0.2; and
also be obtained. [b] a 5 2.1, f 5 Õ 0.2, we make numerical calculations

and plot three � gures to show the results: the v0 as a
3. Numerical calculation function of u; h as a function of u; and g as function of

We now discuss the solution of equations (6) and (7) u. These are shown respectively by � gures 1, 2, and 3.
for both � rst and second order transitions by means of From � gure 3, we � nd the two curves expressing two
numerical calculation. diŒerently typical situations for the transition at saturation

De� ning parameters and variable: point.

(1) The normal situation. Curve [a] is tangential to
u 5 sin2 hm , v 5

sin2 hm
sin2 h

, v0
sin2 hm
sin2 h0

(14)
the horizontal axis of g 5 0 at the point u 5 0, and
decrease monotonously as u increases. It indicates

and the reduced � eld h, the reduced anchoring strength a:

h 5
H

H0
c

, H0
c 5

p

l AK11
xa
B1/2

(15)

a 5
Al

2K11
. (16)

By means of these parameters and variable, equations
(10) and (11) can be rewritten as

p

2
h 5 P l

v0

1

2vC v 1 cv Õ cu

(v Õ u) (1 Õ v)D1/2
dv (17)

p

2
h 5

a(v0 1 2fv0 Õ 2fu)(v0 Õ u)1/2

v0[(v0 1 cv0 Õ cu) (1 Õ v0 )]1/2
. (18)

De� ning the reduced free energy diŒerence

Figure 1. The relation between u and v0 .g 5
l (G

h
Õ Gs )

2K11 S
. (19)

This can be expressed as:

g 5 2I2
1 Õ uI2

1 Õ 2I1I2 1 a
u
v0
Af

u
v0

Õ 2f Õ 1B (20)

where

I1 5 P l

v0

(v 1 cv Õ cu)1/2

2v[(v Õ u) (1 Õ v)]1/2
dv (21)

and

I2 5 P l

v0

[(v Õ u) (v 1 cv Õ cu)]1/2

2v2 (1 Õ v)1/2
dv. (22)

Based on the equations above, one can calculate g as
a function of u. First, for a given u, we can solve v0 and

Figure 2. The relation between u and h.h from (17) and (18); second, from (21) and (22) we can
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644 Y. Guochen and Z. Suhua

The saturation � eld may be obtained using this method,
and the transition is seen as second order. The � eld
satisfying the equation (25) is written as h0

sat .
We know [4] that the reduced threshold � eld satis� es

(p/2)hth 5 a coth[(p/2)hth]; this leads to the determination
of parameter f by means of equation (25) if hth and hsat
are known.

5. The condition for the � rst order transition
As � gure 3 curve [b] shows, the reduced free energy

diŒerence is greater than zero in the vicinity of u 5 0 for
a � rst order transition; but it is less than zero for a
second order transition. From this, we can obtain the
condition for a � rst order transition.Figure 3. The relation between g and u.

We can calculate the value of g and its � rst and
second order derivative values at u 5 0 from equations
(17), (18), (20), (21), (22), etc. The results are as follows:

that when u 5 0, G
h
5 Gs ; when u > 0, G

h
< Gs ; g|

u=0
5 0 (26)

and the transition from the disturbed solution
state to the saturation solution state occurs at the dg

du Ku=0
5 0 (27)point u 5 0; the director n and its distribution

change continuously. Thus the transition is of
second order.

(2) The anomalous situation. Curve [b] is also
tangential to the horizontal axis of g 5 0 at the d2g

du2 Ku=0
5

ka2 (1 1 2f)2V 2
0 Õ 2ak(1 1 2f) (1 Õ V0 )

1 akV0 (1 1 2f) (1 Õ V0 )
Õ 4a(1 1 2f)(1 Õ V0 )1 4a(1 Õ V0 )

4V 2
0 (1 Õ V0 )

(28)
point u 5 0, but it � rst rises, then falls and � nally
intersects with the horizontal axis g 5 0 at u 5 0.19.
When u > 0.19, the curve is below the horizontal where V0 is the value of v0 when u 5 0. From equations
axis of g 5 0 and G

h
< Gs . This indicates that (23) and (24) can we obtain

the transition occurs at the point u 5 0.20, and the
changes of the director and its distribution are

ln
1 Õ (1 Õ V0 )1/2

1 1 (1 Õ V0 )1/2
5 Õ

2ak(1 1 2f)
(1 Õ V0 )1/2

(29)
discontinuous. So the transition is of � rst order.

where k 5 K11 /K33 .
Let us discuss the condition for the � rst order4. The saturation � eld strength of the second order

transition. When d2g/du2 |
u=1

> 0, g is greater than zerotransition
in the vicinity of u 5 0 and the � rst order transition willThe saturation � eld can be obtained easily if we know
appear. For a particular liquid crystal material and forthat the transition must be second order; the transition
a given substrate, k, a and f are known. V0 can bepoint is at u 5 0. From equation (17), when u approaches
obtained from equation (29); we can then judge whetherzero, we get:
the transition is � rst or second order from (28).

In order to fully understand the condition, we havep

2
hsat 5 (1 1 c)1/2 ln

1 1 (1 Õ V0 )1/2

V 1/2
0

. (23) taken a and 1 1 2f as variables and plotted their graphs
for k 5 0.8, 0.6 and 0.4, respectively, in � gures 4, 5, 6. In
these � gures, the curve of d2g/du2 |

u=0
5 0 divides theEquation (18) can be rewritten as:

plane into two areas, one for � rst order, the other for
second order transitions.p

2
hsat 5

a(1 1 2f)
(1 1 c)1/2

1
(1 Õ V0 )1/2

(24)

and from equations (23) and (24), we obtain: 6. The saturation � eld for the � rst order transition
For the � rst order transition, uc Þ 0, and the saturation

� eld strength is not equal to h0
sat . However, one canp

2
hsat 5

a(1 1 2f)
(1 1 c)1/2

cothC 1
(1 1 c)1/2

p

2
hsatD . (25)

calculate uc and hsat from equations (17)–(22). From
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645Fréedericksz transition in weak anchoring NL C cells

equation (19), we can obtain:

g 5 uC2I1I3 Õ I2
1 1 a

1
v0
Af

u
v0

Õ 2f Õ 1BD (30)

where

I3 5
I1 Õ I2

u
5 P 1

v0

(v 1 cv Õ cu)1/2

2v2[(v Õ u)(1 Õ v)]1/2
dv. (31)

Because u 5 uc and g 5 0, then uc satis� es:

2I1I3 Õ I2
1 1 a

1
v0
Af

uc
v0

Õ 2f Õ 1B 5 0 (32)

where I1 , I3 , v0 have to be calculated at u 5 uc . By
Figure 4. The areas of � rst order transition for k 5 0.8.

means of equations (17), (18), (21), (30) and (32), uc can
be obtained and hsat be calculated from equation (17).

The numerical results for hsat and h0
sat for diŒerent

values of a, k and f are arranged in the table. From this
table, we see that hsat is larger than h0

sat ; hsat $ 1.5h0
sat .

The physical eŒect of this is important.

Table. The value of hsat .

k a uc hsat h0
sat

hsat Õ h0
sat

h0
sat

3 100%

0.8 2.1 0.193 1.399 0.859 62.9
0.8 2.6 0.082 1.641 1.001 64.0
0.6 3.5 0.133 1.923 1.165 65.1
0.6 3.2 0.088 1.819 1.090 66.9
0.4 3.0 0.087 1.511 0.971 55.6
0.4 2.0 0.088 1.028 0.758 35.6

Figure 5. The areas of � rst order transition for k 5 0.6.
Appendix

We may calculate the values of dg/du|
u=0

and
d2g/du2 |

u=0
from equations (17), (18), (20), (21) and

(22). From (29) we obtain:

dg
du Ku=0

5 4I1 |
u=0

dI1
du Ku=0

Õ I2
1 |

u=0
Õ 2I1 |

u=0
dI2
du Ku=0

Õ 2I2 |
u=0

dI1
du Ku=0

1
a

V0
(Õ 2f Õ 1) (A1)

d2g
du2 Ku=0

5 4AdI1
du B2 Ku=0

1 2I1 |
u=0

d2I1
du2 Ku=0

Õ 4I1 |
u=0

dI1
du Ku=0

Õ 4
dI1
du Ku=0

dI2
du Ku=0

Õ 2I1 |
u=0

d2I2
du2 Ku=0

1
2a(1 2f)

V 2
0

dV0
du Ku=0

1
2af

V 2
0

.

Figure 6. The areas of � rst order transition for k 5 0.4. (A2)
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646 Fréedericksz transition in weak anchoring NL C cells

From (21), we can obtain: d2I2
du2 Ku=0

5
Õ 1

8(1 1 c)1/2C(2 1 3V0 )(1 Õ V0 )1/2

4V 2
0

Õ
3
8

ln
1 Õ (1 Õ V0 )1/2

1 1 (1 Õ V0 )1/2DI1 |
u=0

5 Õ
(1 1 c)1/2

2
ln

1 Õ (1 Õ V0 )1/2

1 1 (1 Õ V0 )1/2
(A3)

1 C(2 Õ 3V0 ) (1 1 c)1/2

2V 2
0 (1 Õ V0 )1/2

dV0
du Ku=0

dI1
du Ku=0

5
(1 Õ V0 )1/2

4V0 (1 1 c)1/2
Õ

1
8(1 1 c)1/2

ln
1 Õ (1 Õ V0 )1/2

1 1 (1 Õ V0 )1/2

1
(1 1 2c)

2V 2
0 (1 Õ V0 )1/2 (1 1 c)1/2DdV0

du Ku=0Õ
(1 1 c)1/2

2V0 (1 Õ V0 )1/2
dV0
du Ku=0

(A4)

Õ
(1 1 c)1/2

2V0 (1 Õ V0 )1/2

d2V0
du2 Ku=0

. (A8)

d2I1
du2 Ku=0

5
4c 1 3

8(1 1 c)3/2C(2 1 3V0 )(1 Õ V0 )1/2

4V 2
0

From equations (18) and (21), we can obtain (29);
with equations (A1–A8) and (20), we can easily obtain
(27) and (28).

Õ
3
8

ln
1 Õ (1 Õ V0 )1/2

1 1 (1 Õ V0 )1/2D References
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